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Abstract: The conversion of desoxycholic acid (2) into the title compound 14 by 13 respectively
17 steps is described herein, including stereoselective construction of C-3 and C-6 hydroxy moie-
ties and introduction of a A”!! double bond by dehydrogenation. 14 is believed to serve as a puta-

tive precursor for the synlncsxs of secosterol 1, isolated from the soft coral Gersemia Sfruticosa.

© 1998 Elsevier Science Ltd. All v ad
1726 aSCVICT STICHCT 1.1G. Anlx nsnl\ icservea.

Target molecule 1, a highly oxygenated 9,11-secosteroid, first isolated from North Pacific soft coral Ger-

L . . )
semia fruticosa', represents one for many known examples of sterols by marine origin™’. The natural product

mitosis’. Because of its attractive biological activity secosterol 1 is believed to be a rewarding aim for

synthesis. In this communication we wish to describe the first part® of our envisaged synthesis of secosterol 1.

Scheme 1: i) Ac;O, AcOH, A (ii) MeOH, HC], A (iii) Jones ox. (iv) Br;, AcOH (v) LiCl, DMF, 85°C (70% overall)

Desoxycholic acid 2 was chosen as a starting material, since it carries at C-3, C-12 and C-24 suitable functi-
ons for modification®. This in mind, enone 3 was formed (scheme 1) by an optimized five step sequence ac-

cording to Reichstein’ in an 150 mmol scale. llowing reductive rearrangement of the enone moiety in 3
facilitates later B-ring manipulations (scheme 2). Therefore, dienolacetate 4 was prepared quantitatively® by

treatment of 3 with isopropenyl acetate” and a catalytic amount of concentrated H,SOs4. Its reduction'® with
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guration at C-3 was done through 'HNMR spectroscopy. Significantly, the o-H (C-3) in 5 and 6 displays a
broad multiplet between 3.46 and 3.54 ppm . Since direct hydroboration of homoallylalcohol § was accom-
panied by loss of both chemo- and stereoselectivity, 5 was protected as methoxymethyl ether using the proce-
dure by Fujita and coworkers' . Subsequent hydroboration'’ > with BH;*Me;$ provides after oxidative work up
the 6u-hydroxy compound 8 in 49 % yield. These optimized results have been obtained by utilizing 1.1
equivalent of borane reagent at +10 °C for 27 h. The moderate yield of this step is partly due to losses of the
protective groups at C-3 and C-12, respectively, apart from formation (5-10 %) of the undesired 53.6(3-diaste-

reomer of 8.

M (i) CsHyO,, H,SO, A (100%)

. AL (i) NaBHL,, THF/MeOH, 0 °C (61% +21%)
L ;I g (iii) CHy(OCHy)y, P,0y9, CHCly, RT (99%)
MOMO ] (iv) BH,Me,S, THF +10 °C; NaOH/H,0;, 0 °C (49%)
" OH 8
Scheme 2:

Normal transacctalization7 in this case (scheme 3) leads to the dimethoxymethyl ether 9, in quantitative yield,

< ucceeds throuch methanolvsis. The mH of the latter

1 Qo J succeeds through methanolysis. 1he yield o1 the latter

< advant nelv inereaced hy the nee of eodinm metal in ahe mothanal Ovidation with PO 5.
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Scheme 3: i) CHx(OCH,),, POy, CHCL;, RT (i) Na, abs. MeOH, A (iii) PDC, CH,Cl;,, RT (90% overall)

In order to increase the total yield of the sequence, the side product 6 from reduction was transformed into the
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is superior to the application of pyridine”. The latter base also leads to the formation of the corresponding
dipivaloate in 50 % yield. By the above described sequence (schemes 2 and 3) 11 could be transformed into
diprotected tetrol 12, which was subsequently oxidized'*'® by PDC and NaOCl, to give ketoacid 13. The

desired methylester is formed simply by treatment of 13 with an etheral solution of diazomethane in a 27 %
vield with respect to starting diol 6.

m\ Ac? H ’/\/\ HQ 1 ,/\—’\

OH

Y 12
" OMOM
0o - (i) PivCi, E;N, Cl;Cly, -4 °C then RT (89%)
COOH (ii) CH,(OCH;),, P40y, CHCly, RT (99%)
- (iii) BH,*Me,S, THF +10 °C; NaOI/H,03, 0 °C (39%)
W (iv) CH,(OCH;),, P40y, CHCls, RT (99%)
= = vii (v) Na, abs, MeOH, A (96%)
w H 10 (vi) PDC, CH,Cl,, RT (89%)
MOMO 20X A (vii) NaOCl,, NaH,PO,, H,0, t-BuOH, CH,CMe,
" omom 'V then CH,N,, E(,0, 0 °C (94%)

Scheme 4:

The C-12 carbonyl moiety in 10 allows now the convenient introduction of the required A*""-double bond"”.
. Far cricrace £.1
dehydrogenation a catalytic amount of 1 M HCI solution proved to be essential. After separation from grey

selenium the raw material was solved in acetic anhydride for complete acetylation. Simple aqueous work up

. . 18 . o .
vields pure C-ring enone 14 in 88 %, wh om 2. Attempts to

accomplish this reaction in other solvents than acetic acid, like pyridine, dioxane or ethanol failed.
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Scheme 5: (i) Se0,, AcOH 1M HCL,A  then AcOH, Ac;0,A (88%)

In our point of view ecnone 14 may serve as an appropriate intermediate for the synthesis of 1, since con-
venient methods for side chain modifi

fows further C-ring manipulation.
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(1.C-2), 27.4 (1,C-16), 28.4 (t, C-7), 30.5 (t, C-22), 31.3 (1, C-23), 34.5 (1, C-1), 35.3 (d, C-20). 26.5
(d. C-8), 37.4 (t, C-4), 39.2 (s, C-10), 45.8 (d, C-14), 46.9 (d, C-17), 51.4 (g, OMe), 53.1 (s, C-13), 33 .4
(d. C-5), 70.7 (d, C-6), 72.1 (d, C-3), 120.9 (d, C-11), 165.3 (s, C-9), 170.4 (s, OCOCII;). 170.8 (s.
OCOCH;3), 174.6 (s, C-24), 205.2 (s, C-12); MS e/z (%): 502 (M", 5), 501 (13), 441 (79), 382 (32), 287
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